
Compositional Verification of Knowledge-Based Systems:
a Case Study for Diagnostic Reasoning

Frank Cornelissen, Catholijn M. Jonker, Jan Treur

Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science

Artificial Intelligence Group
De Boelelaan 1081a

1081 HV Amsterdam
The Netherlands

URL: http://www.cs.vu.nl/~{frankc,jonker,treur}
 Email: {frankc,jonker,treur}@cs.vu.nl

Abstract In this paper a compositional verification method for models of
knowledge-based systems is introduced. Required properties of the system are
formally verified by deriving them from assumptions that themselves are
properties of sub-components, which in their turn may be derived from
assumptions on sub-sub-components, and so on. The method is based on
properties that are formalised in terms of temporal semantics; both static and
dynamic properties are covered. The compositional verification method
imposes structure on the verification process. By the possibility to focus at one
level of abstraction (information and process hiding), compositional verification
provides transparency and limits the complexity per level. Since verification
proofs are structured in a compositional manner, they can be reused in case of
modification of the system. The method is illustrated for a generic model for
diagnostic reasoning.

Keywords Compositional verification, knowledge-based systems, diagnostic
reasoning model, formal compositional modelling.

1. Introduction

When designing complex knowledge-based systems, it is often hard to guarantee that the
specification of a system that has been designed actually fulfills the needs, i.e., whether it satisfies
the design requirements. Especially for critical applications, for example in aerospace domains,
there is a need to prove that the designed system will have certain properties under certain
conditions (assumptions). While developing a proof of such properties, the assumptions that
define the bounds within which the system will function properly are generated.

In this paper, in Section 3, a structured verification method for complex knowledge-based
systems is introduced, called compositional verification. Roughly spoken, the requirements of the
whole system are formally verified by deriving them from assumptions that themselves are
properties of sub-components, which in their turn may be derived from assumptions on sub-sub-
components, and so on. This process ends when primitive components are reached: components
that are not composed, but specified by means of a knowledge base (or any other means).

The method introduced here is illustrated for a generic task model for diagnostic reasoning.
For this example task model, requirements are formulated (both the required static and dynamic
properties), and a compositional system specification is introduced in Section 4. The
compositional specification is based on a task composition that specifies how the main task is
composed of the tasks hypothesis determination and hypothesis validation, and how the sub-task
hypothesis validation is composed of the tasks observation determination, observation execution
and hypothesis evaluation. The compositional specification itself is expressed in the modelling
framework DESIRE, briefly described in Section 2. The application of the compositional
verification method to the example task model is presented in Section 5 (top level of the
composition), Section 6 (lower level), and Section 7 (primitive components).

2. Compositional modelling of knowledge-based systems

The example task model described in this paper is specified within the compositional modelling
framework DESIRE for knowledge-based systems and multi-agent systems (framework for
DEsign and Specification of Interacting REasoning components; cf. (Brazier, Treur, Wijngaards
and Willems, 1995; Brazier, Dunin-Keplicz, Jennings, Treur, 1995)). A number of generic models
for agents and tasks have been developed and used for a number of applications. The
architectures upon which compositional specifications are based are the result of analysis of the
tasks performed. Task compositions include specifications of interaction between tasks at each
level within a task composition. Models specified within DESIRE define the structure of
compositional architectures.: Components in a compositional architecture are directly related to
tasks in a task composition. The hierarchical structures of tasks, interaction and knowledge are
fully preserved within compositional architectures. Below the formal compositional framework for
modelling multi-agent tasks DESIRE is introduced, in which the following aspects are modelled
and specified: (1) a task composition, (2) information exchange, (3) sequencing of tasks, (4)
task delegation, (5) knowledge structures.

The semantics of the modelling language are based on temporal logic (cf., Brazier, Treur,
Wijngaards and Willems, 1996). Design is supported by graphical tools within the DESIRE
software environment. Translation to an operational system is straightforward; the software
environment includes implementation generators with which formal specifications can be
translated into executable code. DESIRE has been successfully applied to design both single agent
and multi-agent knowledge-based systems.

3. Compositional Verification

The purpose of verification is to prove that, under a certain set of assumptions, a system will
adhere a certain set of properties, for example the design requirements. In our approach, this is
done by a mathematical proof (i.e., a proof in the form mathematicians are accustomed to do)
that the specification of the system together with the assumptions implies the properties that it
needs to fulfill.

3.1 The Compositional Verification Method

A compositional system can be viewed at different levels of abstraction. Viewed from the top level,
denoted by L0, the complete system is one component D, with interfaces, whereas internal
information and processes are hidden (information and process hiding). At the next lower level of
abstraction, the top level component D can be viewed as a composition of sub-components,

information links, and task control. The compositional verification method takes into account this
compositional structure. The primitive reasoning components can be verified using more
traditional verification methods such as described in (Treur and Willems, 1994; Leemans, Treur
and Willems, 1993) . Verification of a composed component is done using properties of the sub-
components it embeds and the task control knowledge. This introduces a form of
compositionality in the verification process: the proof that a certain component adheres to a set of
properties depends on the (assumed) properties of its sub-components. The assumptions under
which the component functions properly, are the properties to be proven for its sub-components.
This implies that properties at different levels of abstraction are involved in the verification
process. These properties have hierarchical logical relations in the sense that at each level a
property is logically implied by (a conjunction of) the lower level properties that relate to it in the
hierarchy (see Figure 1).

required properties
of top level component

/ | \

assumptions =
properties

of next lower level components

/ | \ / | \ / | \
.

(and so on)
.

/ | \ / | \ / | \ / | \ / | \

properties of primitive components

Figure 1 Hierarchical relations between properties in compositional verification

Often these properties are not given at the start of the verification process. Actually, the process of
verification has two main aims:

• to find the properties
• given the properties, to prove the higher level properties from lower level properties

The verification proofs that connect one abstraction level with the other are compositional in the
following manner: any proof relating level i to level i+1 can be combined with any proof relating
level i-1 to level i, as long as the same properties at level i are involved. This means, for example,
that the whole compositional structure beneath level i can be replaced by a completely different
design as long as the same properties at level i are achieved. After such a modification the proof
from level i to level i-1 can be reused; only the proof from level i+1 to level i has to be adapted.
In this sense the method supports reuse of verification.

The compositional verification method can be formulated in more detail as follows:

A. Verifying one abstraction level against the other
For each abstraction level the following top-down procedure for verification is followed:
1. Determine which properties are of interest (for the higher level).
2. Determine assumptions (at the lower level) that guarantee these properties.
3. Prove the properties on the basis of these assumptions.

B. Verifying a primitive component
For primitive knowledge-based components a number of techniques exist in literature, see for
example (Treur, Willems 1994; Leemans, Treur, Willems 1993). For primitive non-knowledge-
based components, such as data bases, or neural networks, or optimization algorithms, verification
techniques can be used that are especially tuned for that type of component.

C. The overall verification process
To verify the complete system
1. Determine the properties are that are desired for the whole system.
2. Apply the above procedure A iteratively until primitive components are reached. In the

iteration the desired properties of abstraction level Li are either:
• those determined in step A1, if i = 0, or
• the assumptions made for the higher level Li-1, if i > 0

3. Verify the primitive components according to B.

The results of verification are:
• Properties and assumptions at the different abstraction levels.
• The logical relations between the properties of different abstraction levels (as in Figure 1).

Notes:
• Both static and dynamic properties and connections between them are covered.
• Reuse of verification results is supported: refining an existed verified compositional model by
further decomposition, leads to a verification of the refined system in which the verification
structure of the original system can be reused.
• Process and information hiding limits the complexity of the verification per abstraction level.
• A requirement to apply the compositional verification method described above is the
availability of an explicit specification of how the system description at an abstraction level Li is
composed from the descriptions at the lower abstraction level Li+1; the compositional modelling
framework DESIRE is an instance of a modelling framework that fulfills this requirement.
• In principle, a similar, bottom-up procedure, can be formulated as well.
• For any set of assumptions obtained in A., if it is required that it does not contain superfluous
elements, for each assumption in the set an example may be constructed in which the assumption
does not hold, whereas the other assumptions in the set hold and one or more of the properties
fail. If for one of the assumptions no example is possible, then try to eliminate it.

3.2 Semantics behind the Compositional Verification Method

In principle, verification is always relative to semantics of the system descriptions that are verified.
For the Compositional Verification Method, these semantics are based on compositional
information states and time steps in which transitions from one state to the other occur. In this
sub-section a brief overview of these assumed semantics is given.

An information state M of a component D is an assignment of truth values { true, false, unknown} to
the set of ground atoms that play a role within D. The compositional structure of D is reflected in
the structure of the information state. A formal definition can be found in (Brazier, Treur,
Wijngaards and Willems, 1996). The set of all possible information states of D is denoted by IS(D).

A trace M of a component D is a sequence of information states (Mt)t £ N in IS(D). The set of
all traces is denoted by IS(D)N, or Traces(D). Given a trace M of component C, stateC(M , t, input(C'))

denotes the information state of the input interface of component C' at time point t of the
component C, where C' is either C or a sub-component of C. Analogously, stateC(M , t, output(C')),
denotes the information state of the output interface of component C' at time point t of the
component C. Given a trace M of component C, the task control information state of component
C' at time point t of the component C is denoted by stateC(M , t, tc(C')), where C' is either C or a sub-
component of C.

To connect neighbouring levels of abstraction in a verification proof for a DESIRE
specification, the following elements can be used:

• the assumptions of the sub-components specified within component D
• the interactions between the sub-components of D and / or the interfaces of D
• the input / output information states of the sub-components of D
• the task control information states of the sub-components of D
• the information states of component D
• the task control information states of component D

4. The example task model for diagnostic reasoning

The example model described in this section is based on the generic model for diagnostic
reasoning analysed in (Treur, 1993). Diagnostic reasoning is the analysis of the cause of a
disturbed situation. In most of these situations not all relevant observational facts are known in
advance. The process of acquisition of additional (observation) information is an essential part of

most diagnostic processes (Treur, 1993). Therefore, dynamics play an important role in diagnosis.
In general diagnostic reasoning consists of a number of sub-tasks such as the determination of
hypothesis, the choice of applicable tests, the performance of tests and the interpretation of the test
results. Strategic information such as the suitibility of a test, likeliness of a hypothesis being true
and the cost and effect of a test play an important role. In this section the model of diagnosis to
be verified is described. First the task hierarchy is given, and each component is described,
followed by the interaction between the components.

4.1 Task Composition

The task composition of the system is given in Figure 2. The task Hypothesis Determination
generates hypotheses that are validated by the task Hypothesis Validation.

Hypothesis
Validation

Hypothesis
Determination

Observation
Determination

Observation
Execution

Diagnostic
Reasoning

Hypothesis
Evaluation

Figure 2 Task composition of the diagnostic reasoning task

These two tasks are described in the subsequent sections. In this section HYPS stands for the set of
all (possible) hypotheses and OBS for the set of all (possible) observations.

4.2 Hypothesis Determination

The task Hypothesis Determination suggests hypotheses to be validated. This is done using
information on which hypothesis have been rejected so far. The input and output interfaces are
defined by

input atoms rejected(h), confirmed(h) ; h £HYPS
output atoms focus(h) ; h £HYPS

Whenever an hypothesis has been rejected or confirmed, it should not be suggested as a focus.
The selection of hypotheses for the focus could for example be based on the frequency at which
the hypotheses occur. This component should select one or more hypotheses whenever not all
hypotheses have been rejected. This task is specified as a primitive component in the example.

4.3 Hypothesis Validation

The main task of Hypothesis Validation is to determine whether the hypotheses of a given focus
set are valid. In addition to that it keeps track of hypotheses that have already been validated. The
interface and internal atoms for Hypothesis Validation are the following:

input atoms focus(h) ; h £HYPS
internal atoms observed(o); o £OBS
output atoms rejected(h), confirmed(h); h £HYPS

The input is obtained from Hypothesis Determination.

Hypothesis

Validation

Hypothesis

Determination

diagnosis

assessments

hypotheses

Diagnostic Reasoning

Hypothesis Validation

Observation
Determination

Hypothesis
Evaluation

focus hyp to OD

focus hyp to HE

observation results

evaluation info

Observation
Execution

to observe

observed cwa

Figure 3 Composition and Information Exchange at two levels

The task Hypothesis Validation is composed of three primitive tasks. Each of these are described
shortly in the following paragraphs.

Observation Determination
To validate a hypotheses, observations have to be performed. These observations are selected by
the sub-task Observation Determination . The knowledge required for this selection might include
cost of doing observations, reliability, and so on. The information required by this task are the
hypotheses that are in focus and observations that have already been performed. The interface of
this task is

input atoms focus(h) , observed(o); h £HYPS, o £OBS
output atoms to_observe(o); o £OBS

Observation Execution
The Observations are made in the sub-task Observation Execution. The information this task
requires are the observations it needs to perform. The output consists of the results of those
observations. The interface of this component is as follows:

input atoms target(o) ; o £OBS
output atoms o ; o £OBS

Hypothesis Evaluation
Given observation results, the task Hypothesis Evaluation derives conclusions about which
hypotheses are true. This task has the same level as Observation Execution since it uses the
observations made there to derive truth values of hypothesis in focus by means of anti-causal
knowledge. The interface of this task is

input atoms o ; o £OBS
output atoms h ; h £HYPS

In Figure 3 the interaction within the whole system S is shown. The link hypotheses transfers the
hypotheses determined in Hypothesis Determination to Hypothesis Validation. The link
assessments transfers the results from the evaluation in Hypothesis Evaluation to Hypothesis
Determination so this component knows which hypothesis are rejected. The last link, diagnosis
transfers the diagnosis determined by the system to the output interface of the main component.

5 . Verification of the system S as a whole

First the manner in which time points are attached to the reasoning process is discussed.

5.1 Time points

For the verification of this system we need to introduce time points to reason about the dynamics
of this system as explained in Section 3. For the component S time points are defined as:
• Time point 1 corresponds to the termination time of the first activation of component
Hypothesis Validation

• Time point t + 1 is after the subsequent
activations of Hypothesis Determination and
Hypothesis Validation have been finished.

For the component Hypothesis Validition
the time points are defined as:
• Time point 0 corresponds to no activation
of the component.
• Time point t + 1 is after Hypothesis
Evaluation has been active, or Hypothesis
Validation terminates.

The time steps within both components
are illustrated by a sample trace of the
system in Figure 4.

Observation Determination

Observation Determination

Observation Determination

Observation Execution

Observation Execution

Hypothesis Evaluation

Hypothesis Evaluation

Hypothesis Validation

Hypothesis Validation

Time within HV Time within S

1

1

1

2

3

2

0
0

1

1

1

2

2

Hypothesis Determination

 Figure 4 Trace of the diagnostic system
with annotated time points

5.2 Properties for the top level of the system

First, it is determined which properties the system as a whole should satisfy. Considering that the
system S is a diagnostic reasoning system, it is expected that S produces output of the form
confirmed(h) and / or rejected(h) for some hypotheses h. A first requirement is that output generated by
the system in terms of assessments of hypotheses is correct, i.e., if the system derives that a
hypothesis has been confirmed, it is true in the world situation, and if the system derives it is
rejected, it is false in the world situation. Let the current world state be denoted by M. The
following property relates the output of the system to the current world state.

Assessment correctness of S
The system S is called assessment correct if:

(âM£Traces(S) ât âh stateS(M , t, output(S)) • confirmed(h) ’ M • h) …
(âM£Traces(S) ât âh stateS(M , t, output(S)) • rejected(h) ’ M • ¬h)

Next, the system is required to be effective in generating assessments: during the process it should
derive at least some positive assessment output, except in case all hypotheses are false; then the
system should derive that all hypotheses are rejected:

Assessment effectiveness of S
The system S is called assessment effective if:

(êh M • h ’ âM£Traces(S) êt êh' stateS(M , t, output(S)) • confirmed(h')) …
(âh M • ¬h ’ âM£Traces(S) êt âh stateS(M , t, output(S)) • rejected(h))

It is undesirable (for a static world situation) that the system changes its mind during the process.
Therefore the requirement is chosen that once an assessment has been derived, this is never
revised:

Assessment conservativity of S
The system S is called assessment conservative if:
a) âM£Traces(S) ât âh [stateS(M , t, output(S)) • confirmed(h) ’ stateS(M , t+1, output(S)) • confirmed(h)]

b) âM£Traces(S) ât âh [stateS(M , t, output(S)) • rejected(h) ’ stateS(M , t+1, output(S)) • rejected(h)]

Also termination of the system may be relevant:

Termination of S
The system S always terminates if: âM£Traces(S) êt stateS(M , t, tc(S)) • stop

5.3 Assumptions needed to prove the properties of the top level

The required properties of the system have been proven from assumed properties of the
components at one level lower. During this proof process these assumptions have been discovered.

5.3.1 Assumptions on Hypothesis Validation
Some assumptions are quite straightforward. For example, assessment correctness simply inherits
upward from Hypothesis Validation:

Assessment correctness of HV
The component hypothesis_validation is called assessment correct if:
a) (âM£Traces(HV) ât âh stateHV(M , t, output(HV)) • confirmed(h) ’ M • h)

b) (âM£Traces(HV) ât âh stateHV(M , t, output(HV)) • rejected(h) ’ M • ¬h)

Similarly, for assessment conservation:

Assessment conservativity of HV
The component hypothesis_validation is called assessment conservative if:
a) âM£Traces(HV) ât âh stateHV(M , t, output(HV)) • rejected(h) ’ stateHV(M , t+1, output(HV)) • rejected(h)

b) âM£Traces(HV) ât âh stateHV(M , t, output(HV)) • confirmed(h) ’ stateHV(M , t+1, output(HV)) • confirmed(h)

For effectiveness, the relationship is not one-to-one as in the case of correctness and
conservativity. However, also in this case, at least one (among others) of the required assumptions
on Hypothesis Validation is that it is effective in generating assessments, as long as focus
hypotheses are provided to it. Here, and in the sequel the abbreviation assessed(h) is used instead of
confirmed(h) Ú rejected(h).

Assessment effectiveness of HV
The component hypothesis_validation is called assessment effective if:

(âM£Traces(HV) ât [êh stateHV(M , t, input(HV)) • focus(h)] ’
 [êh' stateHV(M , t, input(HV)) • focus(h') … stateHV(M , t, output(HV)) • assessed(h')])

5.3.2 Assumptions on Hypothesis Determination
For the component Hypothesis Determination the assumption is made that it is efficient and
effective in generating focus hypotheses. Focus efficiency means that no hypotheses are chosen in
focus that already have been assessed.

Focus efficiency of HD
The component hypothesis_determination is called focus efficient if:

âM£Traces(HD) ât âh [stateHD(M , t, input(HD)) • assessed(h) ’ stateHD(M , t, output(HD)) ° focus(h)]

Focus effectiveness means that as long as not all hypotheses have been assessed, there will be
generated focus hypotheses.

Focus effectiveness of HD
The component hypothesis_determination is called focus effective if:

âM£Traces(HD) ât [êh stateHD(M , t, input(HD)) ° assessed(h)] ’ [êh' stateHD(M , t, output(HD)) • focus(h')]

5.3.3 Domain assumptions
The properties at the top level also need assumptions on the (domain) ontology and knowledge to
be used by the task model. These are the assumptions of the type considered in (Fensel, 1995;
Fensel and Benjamins, 1996).

Finite number of hypotheses: The number of hypotheses is finite.

Static world: The world state is static during the processing of the system S.

5.4 Proofs of the properties of the top level

For reasons of space limitation, the proofs have been omitted in this paper; see however the longer
version (Cornelissen, Jonker and Treur, 1997). In Figure 5 the logical connections between the
properties at different levels are depicted. An important notion used in the proofs is the notion of
progression:

Definition (progression of S)
Given a trace M£Traces(S) and a timepoint t, system S shows progression from time point t to time
point t+1 if êh [stateS(M , t, output(S)) ° assessed(h) … stateS(M , t+1, output(S)) • assessed(h)]

At each step that the system shows progression, due to assessment conservativity, the set of
assessed hypotheses becomes strictly larger. The proofs follow the pattern that the assumptions
guarantee that as long as not all hypotheses have been assessed the system will show progression.
If the number of hypotheses is finite, say N, then within at most N time steps the set of assessed
hypotheses will become the set of all hypotheses, and the system terminates.

It can be noted that for a static world the property of assessment correctness implies assessment
conservatism, so in the graph of Figure 5 more logical relationships can be drawn. However, to
avoid a complicated graph we did not attempt to give a complete account of all possible logical
relationships in Figure 5.

system
assessment

effective

system
terminates

system
assessment
conservative

system
focus

efficient

system
assessment

correct

hypothesis
determination

focus
efficient

hypothesis
validation

assessment
correct

hypothesis
validation

assessment
conservative

hypothesis
validation

assessment
effective

hypothesis
determination

focus
effective

hypothesis
evaluation

assessment
correct

hypothesis
evaluation

assessment
conservative

observation
execution

observation
correct

observation
execution

observation
conservative

observation
determination
observation

effective

observation
determination
observation

efficient

observation
determination

execution
effective

hypothesis
evaluation

assessment
decisive

Figure 5 Logical relations between properties at different levels:
the diagnostic reasoning case

6. Assumptions to prove the properties of Hypothesis Validation

The properties of Hypothesis Validation needed to prove the properties of the top level of the
system were discussed in Section 5.3 (see Figure 5). The assumed properties of the sub-
components of Hypothesis Validation, needed to prove these properties can also be found in
Figure 5, at the lower level. For shortness, these properties are only explained informally; for
formal definitions, see the full report.

The required properties of Observation Determination are:

Observation efficiency of OD: No observations are generated that already were performed.

Observation effectiveness of OD: If there exists at least one hypothesis in focus, and not all
observations have been performed, then at least one observation is generated.

Execution effectiveness of OD: Every generated observation is performed

The required properties of Observation Execution are:

Observation conservativity of OE: Once an observation result has been obtained, it will persist.

Observation correctness of OE: Every observation result that is obtained is true in the world
situation.

The required properties of Hypothesis Evaluation are:

Assessment conservativity of HE: Once an hypothesis assessment has been derived, it will persist.

Assessment decisiveness of HE: If for all possible observations, observation results have been
input, then for every hypothesis an assessment can de derived.

Assessment correctness of HE: If a hypothesis is derived, then it is true in the world situation; if
the negation of a hypothesis is derived, then the hypothesis is false in the world situation.

In addition to the domain assumptions mentioned in Section 5.3.3, the following are needed:

Empirically foundedness: The hypotheses can be uniquely characterised by means of
observations; in other words: if two world situations satisfy exactly the same observations, then
they also satisfy exactly the same hypotheses; see (Treur and Willems, 1994).

Finite number of observations: The number of observations needs to be finite because (in the
worst case) the system should be able to do all (relevant) observations to assess all hypotheses.

7. Verification of the properties of the primitive components

In Sections 5 and 6 verification of the generic task model was described, based on assumed
properties of the primitive components. If the model is to be used, instances are required for the
primitive components (e.g., containing domain knowledge), and for these instances it has to be
verified whether they satisfy the required properties.

The instances of primitive components can be verified making use of the more standard
methods described in (Treur and Willems, 1994). For example, the component Hypothesis
Determination should satisfy focus efficiency and focus effectiveness. Actually, these properties
reduce to the following static properties of Hypothesis Determination:

For any input model M of HD it holds
âh [M • assessed(h) ’ M ‡HD focus(h)] … [êh M ° assessed(h) ’ êh' M ¶HD focus(h')]

This type of static properties can be verified automatically for a given knowledge base, by tools as
described in (Leemans, Treur and Willems, 1993). In a similar manner the properties observation
effectiveness and observation efficiency of the component Observation determination reduce to
static properties.

Correctness of Observation Execution and of Hypothesis Evaluation reduce to the (static)
property of soundness defined in (Treur and Willems, 1994; Leemans, Treur and Willems, 1993).
The property of assessment decisiveness of Hypothesis Evaluation reduces to the static notion
decisiveness, which in its turn depends on the domain assumption of empirically foundedness (see
Theorem 6.3 of (Treur and Willems, 1994)). The property observation conservativity of the
component Observation Execution depends on the static world assumption (and on correctness of
observation results).

8. Conclusions

The modelling framework DESIRE is based on compositionality. The compositional verification
method described in this paper fits well to DESIRE, but can also be useful to any other
compositional modelling approach. The advantage of a compositional approach to modelling is
to be able to reuse components and task models easily; the compositional verification method
extends this to the reuse of proofs for properties of components that are reused. For example, the
diagnostic reasoning system described in this paper could be modified by changing the
component Hypothesis Validation. If this changed component has the same properties as the

current, the proof of the top level properties can be reused to show that the new system has the
same properties as the original. This has high value for a library of generic task models, where the
domain knowledge is not yet known. The verification of generic task models forces one to find
the assumptions under which the generic task model is applicable for the considered domain, as is
also discussed in (Fensel, 1995, Fensel and Benjamins, 1996). A library of reusable components
and task models will be set up, consisting of both specifications of the components and models,
and their design rationale. Although the precise contents of the design rationale is currently under
study, at least the properties of the components and their logical relations (e.g., as represented in
Figure 5) are to be part of it.

Due to the compositional nature of the verification method, a distributed approach to
verification is facilitated. This implies that several persons can work on the verification of the same
system at the same time, once the properties to be verified have been determined. Since the proof
of properties of a composed component depends on the properties of its sub-components, it is
only necessary to know or to agree on the properties of these sub-components. The method
proposed in this paper is useful for compositional knowledge-based systems as well as
compositional multi-agent systems.

A main difference of the current paper in comparison to the work in (Fensel, 1995, Fensel and
Benjamins, 1996; Fensel et al, 1996) is that in our approach compositionality of the verification is
addressed; in the work as referred only domain assumptions are taken into account, and no
hierarchical relations between properties are defined. Compared to (Fensel and Benjamins, 1996),
where also properties of diagnosis are identified, in the current paper the properties are formalised
in formal semantical terms (they are expressed in terms of temporal formal semantics), whereas in
the paper as referred the properties are not (yet) formalised. For example, the formalisation of the
assumption ‘heuristic search knowledge’ (see Table 3 in Section 4 in the paper as mentioned) in
terms of the semantics of the behaviour of the system might turn out far from trivial. Especially
the semantical formalisation of such dynamic properties and their logical relationships is a
challenge. Furthermore, assumptions on the dynamics of hypothesis determination and the
heuristic knowledge involved, as presented in our paper, have been left out of consideration. On
the other hand, the value of the paper is that it gives an extensive account on various assumptions
for model-based diagnosis; this was left out of consideration in our paper. Besides
compositionality, a difference of our approach with (Harmelen and Teije, 1997) is that in the
latter approach only static properties of diagnosis are considered, whereas in our approach also
dynamic properties are covered, formalised in temporal semantics.

Previous work on verification of compositional knowledge-based systems, described in (Treur
and Willems, 1995), was based on the formulation of a compositional verification principle
described in (Abadi and Lamport, 1993), applied to knowledge-based systems. This principle lifts
properties of the sub-components to the component in which these are embedded. If all sub-
components satisfy a certain property, and they are connected in the right manner, then the
component as a whole will satisfy that property. The properties that can be verified in this way are
the properties such as ‘functions properly’. However, for most real-world systems it gives more
insight to explicit ‘proper functioning’ in the form of (task and domain) specific properties, as
has been shown above. In this sense the current paper is a further development and refinement of
the work described in (Treur and Willems, 1995).

A future continuation of this work will consider the development of tools for verification. At
the moment tools exist for the verification of primitive components but not for the verification of
composed components. To support the handwork of verification it would be useful to have tools
to assist in the creation of the proofs. This could be done by formalizing the proofs of a
verification process using a first order logic in which time and states are represented explicitly,
and an interactive theorem prover to support the proofs. Another option to be explored is whether
the tool KIV (based on dynamic logic) can be used. Some first, positive experiences with KIV for
verification of an example model of a knowledge-based system are reported in (Fensel et al.,
1996).

Acknowledgements
Dieter Fensel provided useful comments on an earlier version of this paper.

References
Abadi, M. and L. Lamport (1993). Composing Specifications, ACM Transactions on Programming Languages

and Systems, Vol. 15, No. 1, 1993, pp. 73-132.

Benjamins, R., Fensel, D., Straatman, R. (1996). Assumptions of problem-solving methods and their role in
knowledge engineering. In: W. Wahlster (Ed.), Proceedings of the Twelfth European Conference on Artificial
Intelligence, ECAI'96, John Wiley and Sons, 1996, pp. 408-412.

Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and Treur, J. (1995). Formal Specification of Multi-Agent
Systems: a Real-World Case. In: V. Lesser (Ed.), Proceedings of the First International Conference on Multi-
Agent Systems, ICMAS’95, MIT Press, Cambridge, MA, pp. 25-32. Extended version in: International
Journal of Cooperative Information Systems, M. Huhns, M. Singh, (Eds.), special issue on Formal Methods
in Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M. (1995). Formal Specification of Hierarchically
(De)Composed Tasks. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of the 9th Banff Knowledge
Acquisition for Knowledge-based Systems workshop, KAW'95, Calgary: SRDG Publications, Department of
Computer Science, University of Calgary, 1995, pp. 25/1-15/20.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M. (1996). Temporal semantics of complex
reasoning tasks. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of the 10th Banff Knowledge Acquisition
for Knowledge-based Systems workshop, KAW'96, Calgary: SRDG Publications, Department of Computer
Science, University of Calgary, 1996, pp. 15/1-15/17.

Fensel, D. (1995). Assumptions and limitatons of a problem solving method: a case study. In: B.R. Gaines,
M.A. Musen (Eds.), Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-based Systems
workshop, KAW'95, Calgary: SRDG Publications, Department of Computer Science, University of Calgary,
1995.

Fensel, D., Benjamins, R. (1996) Assumptions in model-based diagnosis. In: B.R. Gaines, M.A. Musen (Eds.),
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-based Systems workshop, KAW'96,
Calgary: SRDG Publications, Department of Computer Science, University of Calgary, 1996, pp. 5/1-5/18.

Fensel, D., Schonegge, A., Groenboom, R., Wielinga, B. (1996). Specification and verification of knowledge-
based systems. In: B.R. Gaines, M.A. Musen (Eds.), Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-based Systems workshop, KAW'96, Calgary: SRDG Publications, Department of Computer
Science, University of Calgary, 1996, pp. 4/1-4/20.

Harmelen, F. van, Teije, A. ten (1997). Validation and verification of diagnostic systems based on their
conceptual model. In: Proceedings of the Fourth European Symposium on the Validation and Verification of
Knowledge-based Systems, EUROVAV'97, this volume, 1997.

Harmelen, F. van and Fensel, D. (1995). Formal Methods in Knowledge Engineering. Knowledge Engineering
Review, Volume 10, Number 4, 1995.

Leemans, P., J. Treur, and M. Willems (1993). On the verification of knowledge-based reasoning modules,
Report IR-346, Department of Mathematics & Computer Science, Artifical Intelligence Group, Vrije
Universiteit Amsterdam, 1993.

Treur, J. (1993). Heuristic reasoning and relative incompleteness. International Journal of Approximate
Reasoning, vol. 8, 1993, pp. 51-87.

Treur, J., and M. Willems (1994). A logical foundation for verification. In: Proceedings of the Eleventh
European Conference on Artificial Intelligence, ECAI’94, A.G. Cohn (Ed.), John Wiley & Sons, Ltd., 1994,
pp. 745-749.

Treur, J., and M. Willems (1995). Formal notions for verification of dynamics of knowledge-based systems. In:
Proceedings of the Third European Symposium on the Validation and Verification of Knowledge-based
Systems, EUROVAV'95, 1995, pp. 189-199.

Treur, J. and Th. Wetter (1993). Formal Specification of Complex Reasoning Systems. Ellis Horwood, 1993.

